Expression, purification, and properties of the aldehyde dehydrogenase homologous carboxyl-terminal domain of rat 10-formyltetrahydrofolate dehydrogenase.

نویسندگان

  • S A Krupenko
  • C Wagner
  • R J Cook
چکیده

The liver cytosolic enzyme, 10-formyltetrahydrofolate dehydrogenase (FDH) (EC 1.5.1.6) catalyzes two reactions: the NADP+-dependent oxidation of 10-formyltetrahydrofolate to tetrahydrofolate and CO2 and the NADP+-independent hydrolysis of 10-formyltetrahydrofolate to tetrahydrofolate and formate. The COOH-terminal domain of the enzyme (residues 420-902) is about 48% identical to a family of NAD-dependent aldehyde dehydrogenases (EC 1.2.1.3), and FDH possesses aldehyde dehydrogenase activity. We expressed the COOH-terminal domain (residues 420-902) of FDH in insect cells using a baculovirus expression system. The recombinant protein was released from insect cells to the culture medium and was purified from the medium by a two-step procedure: precipitation with 35% saturated ammonium sulfate followed by chromatography on hydroxyapatite. The purified COOH-terminal domain displayed aldehyde dehydrogenase activity similar to that of native FDH but had neither dehydrogenase nor hydrolase activity toward folate substrates. Aldehyde dehydrogenase activity of the COOH-terminal domain and FDH was independent of the presence of 2-mercaptoethanol while 10-FDDF dehydrogenase activity of FDH occurred only in the presence of 2-mercaptoethanol. The COOH-terminal domain existed as a tetramer showing that the sites for oligomerization of subunits in native FDH resides in this domain. Using titration of tryptophan fluorescence, it was found that the COOH-terminal domain bound NADP+ to the same extent as FDH (Kd 0.2 and 0.3 microM, respectively) but did not bind folate. Both FDH and its COOH-terminal domain also bound NAD+ (Kd 11 and 16 microM, respectively) as measured by fluorescence titration. Both proteins were able to catalyze the aldehyde dehydrogenase reaction utilizing NADP+ or NAD+, but the Km for NAD+ was three orders higher than that for NADP+ (2 mM and 1.5-2.0 microM, respectively). The concentration of NAD+ required for the reaction was high compared with the physiological level of NAD+, suggesting that the reaction does not occur in vivo. NAD+ at physiological concentrations stimulated the aldehyde dehydrogenase reaction performed by FDH or its COOH-terminal domain using NADP+.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disruption of a calmodulin central helix-like region of 10-formyltetrahydrofolate dehydrogenase impairs its dehydrogenase activity by uncoupling the functional domains.

10-Formyltetrahydrofolate dehydrogenase (FDH) is composed of three domains and possesses three catalytic activities but has only two catalytic centers. The amino-terminal domain (residue 1-310) bears 10-formyltetrahydrofolate hydrolase activity, the carboxyl-terminal domain (residue 420-902) bears an aldehyde dehydrogenase activity, and the full-length FDH produces 10-formyltetrahydrofolate deh...

متن کامل

Domain structure of rat 10-formyltetrahydrofolate dehydrogenase. Resolution of the amino-terminal domain as 10-formyltetrahydrofolate hydrolase.

We expressed the NH2-terminal domain of the multidomain, multifunctional enzyme, 10-formyltetrahydrofolate dehydrogenase (FDH), using a baculovirus expression system in insect cells. Expression of the 203-amino acid NH2-terminal domain (residues 1-203), which is 24-30% identical to a group of glycinamide ribonucleotide transformylases (EC 2.1.2.2), resulted in the appearance of insoluble recomb...

متن کامل

Affinity Purification and Characterization of Recombinant Bacillus sphaericus Phenylalanine Dehydrogenase Produced by pET Expression Vector System

Cloning and expression of the L-phenylalanine dehydrogenase gene, from B. sphaericus in E. coli were done. The gene was cloned in the vector pET16b and transformed into E. coli BL21 (DE3). The functional form of the L-phenylalanine dehydrogenase enzyme was purified by affinity purification techniques, taking advantage of the ability of this enzyme to bind to the nucleotide site affinity dye, Re...

متن کامل

Conserved catalytic residues of the ALDH1L1 aldehyde dehydrogenase domain control binding and discharging of the coenzyme.

The C-terminal domain (C(t)-FDH) of 10-formyltetrahydrofolate dehydrogenase (FDH, ALDH1L1) is an NADP(+)-dependent oxidoreductase and a structural and functional homolog of aldehyde dehydrogenases. Here we report the crystal structures of several C(t)-FDH mutants in which two essential catalytic residues adjacent to the nicotinamide ring of bound NADP(+), Cys-707 and Glu-673, were replaced sepa...

متن کامل

Microsomal aldehyde dehydrogenase is localized to the endoplasmic reticulum via its carboxyl-terminal 35 amino acids

Rat microsomal aldehyde dehydrogenase (msALDH) has no amino-terminal signal sequence, but instead it has a characteristic hydrophobic domain at the carboxyl terminus (Miyauchi, K., R. Masaki, S. Taketani, A. Yamamoto, A. Akayama, and Y. Tashiro. 1991. J. Biol. Chem. 266:19536-19542). This membrane-bound enzyme is a useful model protein for studying posttranslational localization to its final de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 272 15  شماره 

صفحات  -

تاریخ انتشار 1997